Roles of putative Rho-GEF Gef2 in division-site positioning and contractile-ring function in fission yeast cytokinesis
نویسندگان
چکیده
Cytokinesis is crucial for integrating genome inheritance and cell functions. In multicellular organisms, Rho-guanine nucleotide exchange factors (GEFs) and Rho GTPases are key regulators of division-plane specification and contractile-ring formation during cytokinesis, but how they regulate early steps of cytokinesis in fission yeast remains largely unknown. Here we show that putative Rho-GEF Gef2 and Polo kinase Plo1 coordinate to control the medial cortical localization and function of anillin-related protein Mid1. The division-site positioning defects of gef2Δ plo1-ts18 double mutant can be partially rescued by increasing Mid1 levels. We find that Gef2 physically interacts with the Mid1 N-terminus and modulates Mid1 cortical binding. Gef2 localization to cortical nodes and the contractile ring depends on its last 145 residues, and the DBL-homology domain is important for its function in cytokinesis. Our data suggest the interaction between Rho-GEFs and anillins is an important step in the signaling pathways during cytokinesis. In addition, Gef2 also regulates contractile-ring function late in cytokinesis and may negatively regulate the septation initiation network. Collectively, we propose that Gef2 facilitates and stabilizes Mid1 binding to the medial cortex, where the localized Mid1 specifies the division site and induces contractile-ring assembly.
منابع مشابه
Cooperation between Rho-GEF Gef2 and its binding partner Nod1 in the regulation of fission yeast cytokinesis
Cytokinesis is the last step of the cell-division cycle, which requires precise spatial and temporal regulation to ensure genetic stability. Rho guanine nucleotide exchange factors (Rho GEFs) and Rho GTPases are among the key regulators of cytokinesis. We previously found that putative Rho-GEF Gef2 coordinates with Polo kinase Plo1 to control the medial cortical localization of anillin-like pro...
متن کاملFission Yeast Nod1 Is a Component of Cortical Nodes Involved in Cell Size Control and Division Site Placement
Most cells enter mitosis once they have reached a defined size. In the fission yeast Schizosaccharomyces pombe, mitotic entry is orchestrated by a geometry-sensing mechanism that involves the Cdk1/Cdc2-inhibiting Wee1 kinase. The factors upstream of Wee1 gather together in interphase to form a characteristic medial and cortical belt of nodes. Nodes are also considered to be precursors of the cy...
متن کاملRegulation of Rho-GEF Rgf3 by the arrestin Art1 in fission yeast cytokinesis
Rho GTPases, activated by guanine nucleotide exchange factors (GEFs), are essential regulators of polarized cell growth, cytokinesis, and many other cellular processes. However, the regulation of Rho-GEFs themselves is not well understood. Rgf3 is an essential GEF for Rho1 GTPase in fission yeast. We show that Rgf3 protein levels and localization are regulated by arrestin-related protein Art1. ...
متن کاملCytokinesis and the contractile ring in fission yeast.
The fission yeast Schizosaccharomyces pombe provides a genetic model system for the study of cytokinesis. As in many eukaryotes, cell division in the fission yeast requires an actin-myosin-based contractile ring. Numerous components of the contractile ring that function in ring assembly, positioning and contraction have been characterized. Many of these proteins are evolutionarily conserved, su...
متن کاملMechanisms for concentrating Rho1 during cytokinesis.
The small GTP-binding protein, Rho1/RhoA plays a central role in cytokinetic actomyosin ring (CAR) assembly and cytokinesis. Concentration of Rho proteins at the division site is a general feature of cytokinesis, yet the mechanisms for recruiting Rho to the division site for cytokinesis remain poorly understood. We find that budding yeast utilizes two mechanisms to concentrate Rho1 at the divis...
متن کامل